Abstract
Recent advances in electrosynthesis of nanomaterials expanded structural and compositional variations accessible by the electrochemical method; however, reliably synthesizable morphological variety fall shy of that available by conventional solvothermal synthesis. In this communication, electrochemical preparation of surfactant-free hollow nanoparticles is demonstrated. By anodic conversion of core-shell precursors with metastable cores, hollowed nickel nanoparticles with uniform dimensions were synthesized and characterized. Implementation of TEM grids as the working electrodes, identical location tracking of the morphological evolution of single particles to anodic stimulus has been demonstrated. The synthesized nanoparticles were employed as catalysts for the alkaline hydrogen evolution reaction and exhibited catalytic rates that compare favorably to the Pt/C benchmark. This marks the first pure electrochemical synthesis of hollow nanoparticles and shall contribute to the structural diversification of electrosynthesized nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.