Abstract

Surface-enhanced Raman scattering (SERS) enables food contaminants monitoring become facile and efficient. Herein, a facile strategy of integrating three-dimensional Ni form with Co/Ni bimetal-organic frameworks combining Ag nanoparticles via electrochemical synthesis method was proposed to develop a high-performance SERS substrate (CoNi-ZIFs@Ag@NF) for efficient detection of tetracycline. The flexible Ni foam (NF) acted as scaffold which can contribute to dramatically enhancing intrinsic electrical conductivity and endowing prepared substrate with high stability and uniform distribution of Ag nanoparticles. Furthermore, the pre-concentration effect of CoNi-ZIFs@Ag@NF for target molecules enhanced SERS performance dramatically. Besides, tetracycline was sensitively detected using CoNi-ZIFs@Ag@NF with low limit of detection (1.0 × 10-11 M) and wide linear detection range (10-10 – 10-5 M) in aqueous solution. Also, the satisfactory recovery (94.45 – 114.25 %) was realized with less than 6.78 % of RSD in real samples. This method would provide a potential and high-performance substrate for SERS monitoring of tetracycline in food and environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.