Abstract

Alkylamines form the backbone of countless nitrogen-containing small molecules possessing desirable biological properties. Despite advances in amine synthesis through transition metal catalysis and photoredox chemistry, multicomponent reactions that leverage inexpensive materials to transform abundant chemical feedstocks into three-dimensional α-substituted alkylamines bearing complex substitution patterns remain scarce. Here, we report the design of a catalyst-free electroreductive manifold that merges amines, carbonyl compounds and carbon-based radical acceptors under ambient conditions without rigorous exclusion of air and moisture. Key to this aminative carbofunctionalization process is the chemoselective generation of nucleophilic α-amino radical intermediates that readily couple with electrophilic partners, providing straightforward access to architecturally intricate alkylamines and drug-like scaffolds which are inaccessible by conventional means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.