Abstract

ABSTRACTA double‐layer film, consisting of an upper layer of ZnO nanosheets and a lower layer of ZnO nanoparticles (designated as ZnONS/NP), was synthesized for the photoanode of a dye‐sensitized solar cell (DSSC) by a one‐step potentiostatic electrodeposition on a conducting fluorine‐doped tin oxide substrate at 70 °C in a solution containing zinc nitrate and sodium acetate, followed by the pyrolysis of the film at 300 °C. The growth mechanism of the double‐layer nanostructure was studied by monitoring the morphological changes at various periods of electrodeposition. The effects of the concentration of acetate anion on the morphology of the double‐layer structure were also studied. The double‐layer film of ZnONS/NP showed a better self‐established light scattering property, compared with that of a thin film of ZnO nanoparticles, prepared without acetate anion. The concentration of an acetate anion in the electrolyte for the electrodeposition of the double‐layer film, the electrodeposition period, and the period for dye adsorption were optimized for obtaining the best performance for a DSSC with a photoanode consisting of the double layer. A metal‐free dye, coded as D149, was used in this research. A conversion efficiency of 4.65% was achieved for a DSSC (0.2376 cm2) with the photoanode, consisting of the double‐layer film, under 100 mW/cm2 illumination in the wavelength range of 400–800 nm. X‐ray diffraction patterns, thermo gravimetric curves, elemental analysis, scanning electron microscopic images, transmission electron microscopic image, transmission spectra, and electrochemical impedance spectra were used to explain observations. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.