Abstract

The nano-porous anodic aluminum oxide has been used as a substrate material for enzymatic biosensor operating in aqueous solutions. Nano-scale porous structure was formed by electrical anodization in an acid solution. By changing anodization conditions, such as electrolyte concentration, temperature, and anodization time, the ordered hexagonal porous structure with well-controlled pore size and depth can be obtained. Nano-porous alumina substrate with adsorbed enzymes was used as an enzyme electrode and pH sensor. The pH changes are driven by the enzymatic reactions, e.g. penicillin G hydrolysis to form penicilloic acid in the presence of penicillinaze. The advantage of physical adsorption used to bound penicillinaze, the model enzyme in this work, to the porous structure, is that usually no reagents are required and only a minimum of “activation” or clean-up steps. Adsorption tends to be less disruptive to enzyme proteins than chemical attachment. Due to the increased active sensor area, the immobilization of enzymes has been enhanced, which in turn improved the electrode’s sensitivity. To characterize the interactions of enzymes with nano-porous alumina oxide, electrochemical impedance spectroscopy (EIS) was used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.