Abstract

Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on MWCNT/GCE by potential cycling electropolymerization in ethaline with the addition of different acid dopants CH3COOH, HClO4, HNO3, H2SO4 and HCl, acetic acid being the best. The electropolymerization process was monitored with anelectrochemical quartz crystal microbalance. The polymerization scan rate was a key factor affecting the electrochemical and morphological properties of the PTHEthaline-CH3COOH/MWCNT/GCE;electrodepositionat 200mVs-1 showing the best performance. The PTH/MWCNT/GCE platform was characterized using cyclic and differential pulse voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The analytical characteristics of the PTH films were evaluated for sensing of ascorbic acid and biosensing of uric acid. The developed sensor exhibited a low detection limit (1.1μM), wide linear range (2.8-3010μM) and high sensitivity (1134μAcm-2mM-1) for ascorbic acid. After immobilization of uricase, UOx, on PTH/MWCNT/GCE, the biosensor was successfully applied to the determination of uric acid, with fast response (˂7s), good sensitivity (450μAcm-2mM-1, wide linear range (0.48-279μM) and low detection limit (58.9nM), better than in the literature and than with PTH prepared in aqueous solution. The determination of uric acid in synthetic urine samples was successfully tested and the mean analytical recovery was 100.8 ± 1.4%. This is a promising approach for the determinationof uric acid in real samples. Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call