Abstract

The electrochemistry of poly(3,4-ethylenedioxythiophene) (PEDOT) was studied in two ionic liquids with bulky organic anions, i.e., 1-butyl-3-methylimidazolium (BMIM) diethylene glycol monomethyl ether sulfate (MDEGSO4) and BMIM octyl sulfate (OctSO4). BMIM-MDEGSO4 is a liquid, while BMIM-OctSO4 is in solid form at room temperature. Electrosynthesis of PEDOT in BMIM-MDEGSO4 with an EDOT concentration of 0.1 M and in BMIM-MDEGSO4/EDOT 1/1 (w/w) solution resulted in no polymer at all or a very limited amount of polymer on the electrode surface, as determined by cyclic voltammetry in 0.1 M KCl(aq) solution. In contrast, electrosynthesis of PEDOT in BMIM-OctSO4/EDOT 1/1 (w/w) resulted in a high yield of electroactive material on the electrode surface. Furthermore, electrosynthesis of PEDOT in ionic liquid–water solution (Cionic liquid=1.5 M) containing 0.1 M EDOT was also found to give a relatively high yield of electroactive material on the electrode surface, both for 1.5 M BMIM-MDEGSO4(aq) and 1.5 M BMIM-OctSO4(aq). The PEDOT electrodes showed an anionic potentiometric response in 10−5–10−1 M KCl(aq) solution, indicating a predominant anion transfer at the polymer–solution interface despite the relatively bulky anions (MDEGSO4− or OctSO4−) incorporated as counterions in PEDOT during electropolymerization. On the basis of electrochemical impedance spectroscopy, the charge (ion) transport properties of the polymer film were strongly influenced by the water content of the ionic liquid (Cionic liquid=0.05–2.0 M).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.