Abstract

The evolution of lariat ethers from relatively simple, substituted crown ethers into electrochemically sensitive ligands is presented. Although nitrogen-pivot lariats were observed to be better binders than the corresponding parent crowns and to retain considerable flexibility after complexation, overall stability constants were not favorable for cation transport applications. This led to the syntheses of nitrobenzene- and anthraquinone-substituted systems capable of reversible redox behavior and drastically enhanced cation binding abilities when reduced. Application of these in enhanced cation transport processes has been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.