Abstract

Hydrogen sulfide removal is usually a necessary but costly step following the anaerobic digestion (AD) in order to upgrade biogas quality. Mitigating sulfide levels of biogas and digestate simultaneously in AD process will decrease the capital cost by eliminating standalone biogas upgrading facility. However, current in situ remediation methods, for instance, dosing of magnesium/sodium hydroxide, oxygen gas, iron salts, and nitrite or nitrate, potentially cause interference to biogas production and may intensively consume energy and chemicals. Here, an electrochemical remediation method was studied to use low-price electrode materials of carbon cloth and stainless steel AISI 304. These electrode materials at 3V showed a complete removal of sulfide in 2days in synthetic media of 10mM sulfide solution. Operating conditions for carbon cloth and stainless steel electrodes as well as major intermediates of electrochemical reactions in bench-scale digester fed with dairy manure were examined to study the performances in sulfide removal and biomethane production. Based on the results, it was concluded that carbon cloth at 2 and 3V, and stainless steel anodes at both 1 and 2V have a potential of significantly removing hydrogen sulfide from biogas under continuous operation given sufficient electrode surface area. Intermittent 3V voltage application (15minutes per day) of stainless steel can remove most biogas hydrogen sulfide. The electrochemical sulfide oxidation and removal showed no/little negative effect on biomethane production, and therefore can be a promising technology for the AD industry to develop a cost-effective approach to producing sulfide free biogas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call