Abstract

The kinetics of electron transfer reaction between cytochrome cd 1 nitrite reductase (NiR) from Pseudomonas aeruginosa and various physiological/non physiological redox partners was investigated using cyclic voltammetry at the pyrolytic graphite electrode. While NiR did not exchange electron with the electrode, cytochrome c 551 and azurin, both from Ps. aeruginosa, behaved as fast electrochemical systems. The intermolecular electron transfers between NiR and cytochrome c 551 or azurin as electron shuttles, in the presence of nitrite, were studied. Second order rate constants of 2×10 6 and 1.4×10 5 M −1 s −1 are calculated for cytochrome c 551 and azurin, respectively. The dependence of the second-order rate constant on ionic strength and pH is discussed. Finally, the effect of the global charge of the electron shuttles was explored using differently charged species (proteins or small ions). The experimental results suggest involvement of polar interactions as well as of hydrophobic contacts in the protein recognition prior to the intermolecular electron transfer. As the cross-reaction between Ps. nautica cytochrome c 552 and Ps. aeruginosa NiR was shown to be as efficient as the catalytic reaction involving the physiological partners, it is concluded to a ‘pseudo-specificity’ in the recognition between NiR and the electron donor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.