Abstract

The electrochemical behavior of organic conjugated semiconductors and their bulk materials is a considerable and irreplaceable parameter to maintain their diverse electronic or optoelectronic applications. In this paper, a series of n-type symmetrical perylene diimide derivatives (PTCDIs) with substituents (3,4-ethylenedioxythiophene (EDOT), cyclohexane, acetic acid, or propionic acid) at located the nitrogens imide position were synthesized, and their solubility, optical features, thermal stability, as well as solution-phase interfacial self-assembly into one-dimensional (1D) nanofibers and related morphology were discussed in detail. Moreover, a simple but effective method, in situ deposition following in situ self-assembly, was developed to construct uniform electrodes over a large area coated with networked PTCDI nanofibers. Then the electrochemical properties of the PTCDI nanofibers were researched in comparison with their molecules. The excellent variability at molecular or nanoscale morphological level will provide an interesting insight into the research of PTCDIs in a wide range applications of organic electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call