Abstract

Manganese dioxide is regarded as a promising energy functional material due to its open tunnel structure with enormous applications in energy storage and catalysis. In this paper, α-MnO2 with a 2 × 2 tunnel structure and β-MnO2 with a 1 × 1 tunnel structure were hydrothermally synthesized, which possess characteristic tunnel structures formed by the interconnected unit structure of [MnO6] octahedrons. With regards to their different tunnel dimensions, the specific mechanism of ion intercalation in these two phases and the effect on their performance as aqueous Zn-MnO2 battery cathodes are explored and compared. Comprehensive analyses illustrate that both α-MnO2 and β-MnO2 provide decent capacity in the aqueous battery system, but their intrinsic stability is poor due to the structural instability upon cycling. At the same time, experiments show that α-MnO2 has a better rate performance than β-MnO2 under larger currents, thus implying that the former has a broader application in this aqueous battery system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.