Abstract

Urea as one of the most abundant compounds that can be used as a fuel in fuel cells. It contains a nitrogen-hydrogen bond that can easily be broken by electrochemical processes to produce two molecules of hydrogen. The hydrogen released can generate electricity as in a fuel cell. In this research, boron-doped diamond (BDD) was modified using nickel and/or cobalt electrodeposition to provide Ni-Co-BDD, Ni-BDD, and Co-BDD working electrodes for enhanced urea electro-oxidation. The highest power density and potential was achieved using Ni-Co-BDD (96.4 mW cm−2 and 0.92 V, respectively), while the highest current density was achieved using Co-BDD (165.34 mA cm−2). Overall, the results indicate that the best and most stable electrode for fuel cells is that based on Ni-Co-BDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.