Abstract
Amino acids have been widely used as green corrosion inhibitors for an array of metals. Considering its importance in corrosion chemistry, studies were undertaken with the objective to discovering the inhibitory effect of a sulfur-containing amino acid, l-cysteine, on copper in different concentrations of sulfuric acid (0.5, 1.0, and 1.5 M) at different temperatures. Techniques like the weight loss method, electrochemical impedance spectroscopy, potentiodynamic polarization (Tafel), and adsorption studies were employed. Results revealed that l-cysteine do offer an attractive inhibition efficiency. However, with an increase in the concentration of the inhibitor, corrosion rates decreased irrespective of the temperature gradients. This is due to surface adsorption of the inhibitor molecules on the metal which has contributed to a decreased double-layer capacitance and increased polarization resistance. With the increase in the concentration of the medium, the corrosion rate was also enhanced and this is due the liberation of a high quantum of H+ ions. Based on the results of Tafel polarization studies, it is evident that the amino acid, l-cysteine, could act as a mixed type inhibitor. The importance of l-cysteine in the corrosion of copper metal has been highlighted in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.