Abstract

Poly(vinylidene fluoride-co-hexafluoropropylene) P(VdF-co-HFP)/magnesium aluminate (MgAl2O4) hybrid fibrous nanocomposite polymer electrolyte membranes were newly prepared by electrospinning method. The as-prepared electrospun pure and nanocomposite fibrous polymer membranes with various MgAl2O4 filler contents were characterized by X ray diffraction, differential scanning calorimetry and scanning electron microscopy techniques. The fibrous nanocomposite polymer electrolytes were prepared by soaking the electrospun membranes in 1 M LiPF6 in EC:DEC (1:1, v/v). The fibrous nanocomposite polymer electrolyte membrane with 5 wt.% of MgAl2O4 show high electrolyte uptake, enhanced ionic conductivity is found to be 2.80 × 10−3 S cm−1 at room temperature and good electrochemical stability window higher than 4.5 V. Electrochemical performance of commercial celgard 2320, fibrous pure and nanocomposite polymer electrolyte (PE, NCPE) membranes with different MgAl2O4 filler content is evaluated in Li/celgard 2320, PE, NCPE/LiCoO2 CR 2032 coin cells at current density 0.1 C-rate. The NCPE with 5 wt.% of MgAl2O4 delivers an initial discharge capacity of 158 mAhg−1 and stable cycle performance compared with the other cells containing celgard 2320 separator and pure membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.