Abstract

The ability of nucleic acids (NA) and their components to accumulate at electrode surfaces and electrochemical properties of these species are closely related. This review is devoted to electrochemical stripping techniques applied in NA studies. Cathodic or anodic stripping voltammetry have been used for a highly sensitive determination of nucleobases, nucleosides, nucleotides or acid-hydrolyzed NAs, based on formation of sparingly soluble complexes of the NA constituents with electrochemically generated mercury or copper(I) ions. DNAs, RNAs and their synthetic analogues, either unmodified or labeled with electroactive markers, have been analyzed by adsorptive stripping (AdS) techniques with mercury, mercury film, amalgam and carbon-based electrodes. Strong adsorption of NAs at the electrode surfaces has been utilized in adsorptive transfer stripping (AdTS) techniques. In AdTS, a NA-modified electrode is prepared by adsorptive accumulation of the NA at the electrode surface, followed by transfer into background electrolyte not containing any NA. NA-modified electrodes can be used as simple electrochemical NA sensors. Recent applications of AdS and AdTS in NA microanalysis, in detection of DNA damage as well as in studies of DNA hybridization or DNA-protein interactions are reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.