Abstract

AbstractIndustrial hydrogen production based on methane steam reforming (MSR) remains challenges in intensive carbon emissions, retarded hydrogen generation owing to coke deposition over catalysts and huge consumption of water. We herein report an electrochemical splitting of methane (ESM) in molten salts at 500 °C to produce hydrogen in an energy saving, emission‐free and water‐free manner. Following the most energy‐saving route on methane‐to‐hydrogen conversion, methane is electrochemically oxidized at anode to generate carbon dioxide and hydrogen. The generated anodic carbon dioxide is in situ captured by the melts and reduced to solid carbon at cathode, enabling a spatial separation of anodic hydrogen generation from cathodic carbon deposition. Life‐cycle assessment on hydrogen‐generation technologies shows that the ESM experiences an equivalent carbon emission much lower than MSR, and a lower equivalent energy input than alkaline water electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.