Abstract

Catalytic decomposition of methane offers a viable solution for producing pure hydrogen and nanocarbon without emitting carbon dioxide. However, conventional thermal catalytic processes and catalysts have limitations in terms of poor carbon quality and catalyst deactivation due to carbon deposition. The newly developed electrochemical splitting of methane (ESM) in molten salt has emerged as a promising alternative that allows for the separate production of hydrogen at the anode and carbon deposition at the cathode. In this study, hydrogen produced via ESM while generating nanocarbon with diverse structures through manipulations of the cathode material and kinetics. Carbon nanotubes grown on Ni cathode, possessing high specific surface area and abundant functional groups, displayed excellent adsorptive capacity for dye adsorption. The open hollow nanocarbon grown on the Ag cathode displayed good capacitance performance. ESM technology has immense potential to enhance the utilization value of carbon by-products and the commercial production of green hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.