Abstract

Sodium ion batteries are considered to be a promising low-cost alternative to common lithium batteries. The exploration of new electrode materials is extremely important for developing sodium ion batteries. In this work, copper hexacyanoferrate (CuHCF), a kind of Prussian blue analogue, was synthesized by a chemical co-precipitation method and the feasibility of the electrochemical sodium ion storage reaction in CuHCF nano-particles in aqueous solution was investigated. All the results demonstrate that the sodium ions can be reversibly inserted/extracted into/from CuHCF nano-particles in aqueous solution, and a specific capacity of 46 mA h g−1 is obtained at the current density of 20 mA g−1. The sodium ion insertion and extraction behaviors are controlled by the solid phase diffusion process in the CuHCF electrode. The well-defined open framework of CuHCF ensures it has good cycle stability. The good performance indicates that CuHCF will be a promising candidate for the cathode materials of sodium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.