Abstract

Abstract An electrochemical process has been developed for the removal of H2S from contaminated natural gas. Removals as high as 80.7% have been achieved from a simulated process gas (2000 ppm H2S). H2S is removed by reduction to the sulfide ion and hydrogen gas at the cathode. The sulfide ion migrates to the anode through a molten electrolyte suspended in an inert ceramic matrix. Once at the anode it is oxidized to elemental sulfur and swept away for condensation in an inert gas stream. No materials are required beyond initial electrolyte membrane installation; the H2S is converted in one step to elemental sulfur making it an economically attractive process both from the lack of raw materials and the lack of any solvent regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.