Abstract

Hydrogen peroxide (H2O2) plays a crucial role in various industries but poses a risk to human health when present in an uncontrolled manner. Hence, it is imperative to develop straightforward, cost-effective, and swift analytical methods for the detection and monitoring of H2O2. This study proposes a detector consisting of polyaniline-doped silver nanoparticles (Ag NPs), utilising a nanostructured okra semiconductor as a sensing material for H2O2 detection. The obtained results indicated that the addition of silver nanoparticles (Ag NPs) (at particle size 30 nm) into the mixture at different concentrations (1, 5, and 10 wt%) and voltages (1.4V–3V) led to good electrochemical performance. The prepared sensor at the Ag nanoparticle weight concentration (10 wt%) proved to have optimal performance. This configuration exhibited a clear and reliable signal response across a broad spectrum of currents at different concentrations of H2O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.