Abstract

A new ordered mesoporous carbon (OMC) composite modified electrode was fabricated for the first time. Binuclear cobalt phthalocyaninehexasulfonate sodium salt (bi-CoPc) can be adsorbed onto didodecyldimethylammonium bromide (DDAB)/OMC film by ion exchange. UV–vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods were used to characterize the composite film. The cyclic voltammograms demonstrate that the charge transfer of bi-CoPc is promoted by the presence of OMC. Further study indicated that bi-CoPc/DDAB/OMC film is the excellent electrocatalyst for the electrochemical reduction of oxygen in a neutral aqueous solution and hemoglobin (Hb) at lower concentrations. Additionally, as an amperometric 2-mercaptoethanol (2-ME) sensor, this modified electrode shows a wider linear range (2.5 × 10 −6 to 1.4 × 10 −4 M), high sensitivity (16.5 μA mM −1) and low detection limit of 0.6 μM (S/N = 3). All these confirm the fact that the new composite film may have wide potential applications in biofuel cells, biological and environmental sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.