Abstract
Enzyme-catalyzed polymer transformation with electrochemical ac impedance detection has been employed for the measurement of urea and creatinine in serum samples. A polymer, based on poly(methylvinyl ether)/maleic anhydride modified by esterification with n-octanol, which is stable at pH 7.4 and which is transformed rapidly in response to alkaline pH changes, was linked to enzymatic reactions between urease and urea or creatinine deiminase and creatinine to produce a disposable sensor system. The polymer was screen-printed onto interdigitated screen-printed carbon electrodes and the electrodes overlaid with absorbent pads containing the relevant enzyme. Application of serum samples, "spiked" with either urea or creatinine, resulted in rapid polymer transformation, and resultant changes in the capacitance of the polymer-coated electrodes were analyte-concentration dependent. Additional information on the mechanisms of polymer transformation was obtained from dynamic quartz crystal microbalance measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.