Abstract
A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL−1 with a detection limit of 0.018μmolL−1. The prepared sensor was also applied to detect DA in real samples with a satisfactory result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.