Abstract

The plate-like Zn-Al layered double hydroxide modified with 1-aminopropyl-3-methylimidzaolium tetrafluoroborate (named as ILs-LDH) was synthesized by coprecipitation method. Several techniques confirmed the layered structure of ILs-LDH with a disk-like morphology. A novel electrochemical sensor based on ILs-LDH modified glass carbon electrode (GCE) was developed for bisphenol A (BPA) determination. Experimental factors including modified content, pH, scan rate, accumulation time and potential had been carefully optimized. ILs-LDH/GCE performed the excellent electro-oxidation ability toward BPA with the more negative oxidation overpotential and larger peak current than bare GCE or LDH/GCE. Differential pulse voltammetry determination of BPA afforded a wider linear range from 0.02 to 3μM with the detection limit of 4.6nM (S/N=3). The fabricated sensor demonstrated an acceptable reproducibility, good stability and high sensitivity. The proposed method was successfully used to detect BPA in real water samples with satisfactory recovery ranging from 94.9% to 102.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.