Abstract

A novel, reliable electrochemical sensor is fabricated for direct and sensitive determination of norepinephrine (NE) based on gold nanoparticles, ionic liquid crystal, and β-cyclodextrin modified carbon paste electrode, namely AuILCCDCPE. The ionic liquid crystal (ILC) played a key role in improving the current response of electro-oxidation of NE compared with other ionic liquids modified electrodes. The ILC increased the ionic conductivity of the paste and formed noncovalent interactions with both host (CD) and guest (NE) compounds. The solid state structure of the ILC helped in the formation of ordered films in the paste. Furthermore, CD and Au nanoparticles raised the stability and the electrocatalytic ability of the proposed sensor. Under optimized conditions, the fabricated electrochemical sensor showed a good electrochemical response towards NE in human urine in the linear dynamic ranges of 0.05–10 μmol/L and 20–300 μmol/L with a correlation coefficient of 0.999 and detection limit of 3.12 × 10−9 mol/L in the low concentration range. The practical analytical performance of the sensor was attained for determination of NE in real samples with satisfied recovery results. This sensor has great ability to be extended for electrochemical applications in assays of other drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call