Abstract

In this study, a ZrO2/nitrogen-doped three-dimensional porous carbon (ZrO2/N-3DPC) nanocomposite was manufactured to fabricate an effective electrochemical sensor for the detection of ultra-trace mercury ion (Hg2+). The synthesized N-3DPC had an open pore structure, large specific surface area and enough continuous mass transfer channels, which can facilitate the diffusion and transmission of electrons and ions at the sensing interface, providing an effective adhesion platform for electrochemical deposition of ZrO2 nanoparticles. Benefiting from the synergistic effect of ZrO2 and N-3DPC, the developed electrochemical sensor had good adsorption and catalytic performance for Hg2+ with a wider linear range of 0.1–220 μg L−1 and a lower detection limit of 0.062 μg L−1. Meanwhile, the sensor exhibited remarkable repeatability, reproducibility, stability and anti-interference, and was further applied to detect Hg2+ in seafood and tap water with satisfactory recoveries (97.1–103.1%) and lower relative standard deviation (≤4.3%). The proposed strategy of electrochemical sensing detection of Hg2+ provides a new idea and direction for the research of ZrO2/N-3DPC nanocomposite in the field of analysis and detection, which is also of great significance to ensure foods, environmental safety and human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call