Abstract

A original electrochemical sensing platform, based on screen-printed electrodes modification with plasma polymerized acrylonitrile (pp-AN) nanofilms is proposed. For that purpose, plasma-enhanced chemical vapor deposition (PECVD) process was conducted in a parallel plate (13.56 MHz) plasma reactor for 2 min with discharge power of 10 W. The surface topography and electrochemical properties of prepared sensors were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersion spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical characteristics of pp-AN/SPCE and pp-AN/SPAuE sensors was investigated for model redox pair [Fe(CN)6]4−/3−. Conducted research confirmed the excellent chemical stability, durability, wide potential window, high signal-to-noise (S/N) ratio, and, most importantly, the ability to standardize the sensors. The pp-AN/SPCE sensor was applied to the determination of bupropion, an antidepressant drug whose intake has increased dramatically during the COVID-19 pandemic. The voltammetric response of pp-AN/SPCE for BUP was linear in two concentration ranges of 0.63–10.0 and 10.0–50.0 μmol L−1, with a detection limit of 0.21 μmol L−1. Satisfactory recoveries (96.2–102%) and good precision (RSD below 4.1%) obtained for environmental and biological samples confirmed the usefulness of the sensor for the analysis of various kinds of samples.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.