Abstract

A novel electrochemical sensor for the detection of glucose was constructed based on the use of Co3O4/PbO2 core-shell nanorod arrays as electrocatalysts. In this paper the Co3O4/PbO2 core-shell nanorod arrays grow directly on a flexible carbon cloth substrate by the combination of hydrothermal synthesis and electrochemical deposition methods. The as-prepared hierarchical nanocomposites show the structural characteristics of nanowire core and nanoparticle shell. The carbon cloth-supported Co3O4/PbO2 nanorod array electrode exhibits higher sensitivity (460.3μAmM−1cm−2 in the range from 5μM to 1.2mM) and lower detection limit (0.31μM (S/N=3)) than the carbon cloth-supported Co3O4 nanowire array electrode. Both the three-dimensional network of carbon cloth substrate and the hierarchical nanostructure of binary Co3O4/PbO2 composites make such an electrode have high electrocatalytic activity towards the glucose oxidation. Due to the excellent sensitivity, repeatability and anti-interference ability, the carbon cloth-supported Co3O4/PbO2 nanorod arrays will be the promising materials for fabricating practical non-enzymatic glucose sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call