Abstract

An electrochemical and sensitive sensing of 2,2-bis(4-hydroxyphenyl) propane [bisphenol A (BPA)] was developed based on a didodecyldimethylammonium bromide-modified expanded graphite paste electrode (DDAB-EGPE). The DDAB-EGPE was prepared by suspending an EGPE in a DDAB aqueous solution, and allowing the DDAB to form a hydrophobic film on the expanded graphite surface. Compared with the EGPE, the DDAB-EGPE showed improved electrochemical response of BPA because of the preconcentration of BPA in DDAB via hydrophobic interaction. Due to the electrocatalytic activity of BPA, a sensor for BPA was constructed based on the DDAB-EGPE. The DDAB-EGPE exhibited a wide linear response to BPA ranging from 6.0 × 10(-8) to 2.0 × 10(-5) mol/L with a detection limit of 7.1 nmol/L at S/N = 3. The designed sensor showed good reproducibility and stability. The proposed sensor was successfully applied to the determination of BPA in three types of real plastic product samples. This sensor presented a simple, rapid, and sensitive platform for the determination of BPA and could become a versatile and powerful tool for food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.