Abstract

A new electrochemical sensor for ATP with synthetic cyclophane stably attached onto single-walled carbon nanotubes (SWNTs) as the recognition elements is described. UV-vis and cyclic voltammetric results demonstrate that ATP may interact with the synthetic cyclophane recognition elements to form a stable adduct mainly through electrostatic, π-π stacking and donor-acceptor interactions. Such interactions eventually lead to a decrease in the peak currents of the cyclophane recognition elements attached onto the SWNT electronic transducer, which could be used for electrochemical sensing of ATP. Under the conditions employed here, the ratio of the decrease in the anodic peak current is linear with ATP concentration within a concentration range from 10 to 120 μM with a linear coefficiency of 0.993. This study may offer a new and simple electrochemical approach for effective sensing of ATP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call