Abstract
We hypothesized that low concentrations of H2O2 could be generated through the electrochemical conversion of oxygen by applying an electric potential to a conductive scaffold and produce a low, but constant, concentration of H2O2 that would be sufficient to destroy biofilms. To test our hypothesis we used a multidrug-resistant Acinetobacter baumannii strain, because this species is often implicated in difficult-to-treat biofilm infections. We used conductive carbon fabric as the scaffold material (“e-scaffold”). In vitro experiments demonstrated the production of a maximum constant concentration of ~25 μM H2O2 near the e-scaffold surface. An e-scaffold was overlaid onto an existing A. baumannii biofilm, and within 24 h there was a ~4-log reduction in viable bacteria with an ~80% decrease in biofilm surface coverage. A similar procedure was used to overlay an e-scaffold onto an existing A. baumannii biofilm that was grown on a porcine explant. After 24 h, there was a ~3-log reduction in viable bacteria from the infected porcine explants with no observable damage to the underlying mammalian tissue based on a viability assay and histology. This research establishes a novel foundation for an alternative antibiotic-free wound dressing to eliminate biofilms.
Highlights
We hypothesized that low concentrations of H2O2 could be generated through the electrochemical conversion of oxygen by applying an electric potential to a conductive scaffold and produce a low, but constant, concentration of H2O2 that would be sufficient to destroy biofilms
Multidrug-resistant Acinetobacter baumannii is an example of an organism that is increasingly linked to nosocomial infections on wound surfaces[1]
To verify that the electrochemical generation of H2O2 is the dominant mechanism for biofilm elimination, we neutralized the mechanism in situ by externally adding catalase to decompose the H2O2 generated by an e-scaffold in an identical A. baumannii biofilm
Summary
We hypothesized that low concentrations of H2O2 could be generated through the electrochemical conversion of oxygen by applying an electric potential to a conductive scaffold and produce a low, but constant, concentration of H2O2 that would be sufficient to destroy biofilms. An e-scaffold was overlaid onto an existing A. baumannii biofilm, and within 24 h there was a ~4-log reduction in viable bacteria with an ~80% decrease in biofilm surface coverage. Multidrug-resistant Acinetobacter baumannii is an example of an organism that is increasingly linked to nosocomial infections on wound surfaces[1]. Biofilm removal from such wounds is paramount because otherwise biofilm delays the healing process and results in a chronic wound infection. Several antimicrobial scaffolds have been developed to dress wounds and remove biofilm infections. These scaffolds are usually “loaded” with a high concentration of an antibacterial compound [silver, zinc, iodine or honey7–11]. Positive (compared to negatively charged bacteria) and Zn generated near a positive pole caused either bacteriostatic or bactericidal activity depending on the bacterial strain under
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.