Abstract

Signal amplification is crucial in electrochemical biosensor to obtain low detection limits. In this work, a highly sensitive sandwich-type thrombin aptasensor is constructed, based on dual signal amplification of uniform silver nanowires (AgNWs) and hollow Au–CeO2 nanocomposites. AgNWs are decorated on the ITO surface to immobilize amino functionalized thrombin capture apemeter 1 (Apt1). And Au nanoparticles (AuNPs) grown directly on the surface of hollow CeO2 microstructure are used to immobilize sulfydryl functionalized thrombin reporter apemeter 2 (Apt2). Thus, sandwich-type apatasensor has been successfully designed, due to the specific recognition between thrombin and the two kinds of aptamers. One of the signal amplifications is from the good conductivity of uniform AgNWs. Moreover, uniform AgNWs together with hollow Au–CeO2 exhibit the good catalytic performance for the reduction of H2O2, further resulting in significant electrochemical signal amplification. Because the electrochemical signal amplification is closely related to the thrombin concentration, differential pulse voltammetry is used to specifically detect thrombin. Under the optimized conditions, the proposed method has a good linear response ranged from 0.5 pM to 30 nM with a low detection limit of 0.25 pM (S/N = 3) for thrombin. The proposed thrombin aptasensor displays good selectivity, reproducibility and stability, providing a good platform for the ultrasensitive detection of thrombin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call