Abstract

The electrochemical detection of metal complexes in the photoexcited state is important for understanding photoinduced electron transfer (PET) processes, which play a central role in photo-energy conversion systems. In general, however, the redox potentials of excited states have been indirectly estimated by a combination of spectroscopic properties and ground-state redox potentials. To establish a simple method for directly determining the redox potentials of the photoexcited states of metal complexes, electrochemical measurements under several conditions were performed. The electrochemical response was largely influenced not only by the generation of photoexcited molecules but also by the convection induced by photoirradiation, even when the global temperature of the sample solution was unchanged. The suppression of these unfavourable electrochemical responses was successfully achieved by adopting well-established electrochemical techniques. Furthermore, as an initial demonstration, the photoexcited state of a Ru-based metal complex was directly detected, and its redox potential was determined using a thin layer electrochemical method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.