Abstract

This study reports fluorine-doped titanium suboxide anode for electrochemical mineralization of hydrophobic micro-contaminant, tetrabromobisphenol A. Fluorinated TiSO anode promoted electro-generated hydroxyl radicals (•OH) with higher selectivity and activity, due to increased O2 evolution potential and more loosely interaction with hydrophobic electrode surface. For electro-oxidation process, fluorine doping had an insignificant impact on outer-sphere reaction and exerted inhibition on inner-sphere reaction, as indicated by cyclic voltammogram performed on Ru(NH3)63+/2+, Fe(CN)63−/4− and Fe3+/2+ redox couple. This facilitated electrochemical conversion of TBBPA and intermediates via more efficient outer-sphere reaction and hydroxylation route. Additionally, generated O2 micro-bubbles could be stabilized on hydrophobic F-doped TiSO anode, which extended the three-phase boundary available for interfacial enrichment of TBBPA and subsequent mineralization. Under action of these comprehensive factors, 0.5% F-doped TiSO electrochemically reactive membrane could achieve 99.7% mineralization of TBBPA upon energy consumption of 0.52 kWh m−3 at current density of 7.8 ± 0.24 mA cm−2 (3.75 V vs SHE) and flow rate of 1628 LHM based on flow-through electrolysis. The modified anode exhibited superior performances compared with un-modified one with more efficient TBBPA removal, less toxic intermediate accumulation and lower energy consumption. The results may have important implications for electrochemical removal and detoxification of hydrophobic micro-pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call