Abstract

The removal of colour from a crystal violet dye solution using a non-porous, electrically conducting carbon-based adsorbent was systematically investigated under different operating conditions. Whilst the adsorptive process was very quick (up to 88% of equilibrium capacity could be achieved within 2 min), the adsorptive capacity of the adsorbent was very low (2 mg g −1) compared with activated carbons. This was due to its low surface area. The conductivity of the adsorbent/electrolyte mixture within the anodic compartment of the electrochemical cell was found to be over 13 times greater with the new adsorbent compared with powdered activated carbon. One hundred percent could be achieved in a simple divided electrochemical cell using treatment times as low as 10 min by passing a charge of 25 C g −1 at a current density of 20 mA cm −2. The efficiency of electrochemical regeneration depends on a range of variables including charge passed, current density, treatment time, electrolyte type and concentration and the adsorbent bed thickness. Multiple adsorption and regeneration cycles indicate that there is little or no loss in adsorbent capacity on regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call