Abstract

The interaction of BiFeO3 and Co-doped BiFeO3 thin-film surfaces with water vapor is examined using photoelectron spectroscopy. Water exposure results in an upward shift of the Fermi energy, which is limited by the reduction of Bi and Fe in undoped BiFeO3 and by the reduction of Co in oxidized Co-doped BiFeO3. The results highlight the importance of surface potential changes induced by the interaction of solid surfaces with water and the ability of photoelectron spectroscopy to quantitatively determine electrochemical reduction potentials and defect energy levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.