Abstract

Propazine (2-chloro-4,6-diisopropylamino-1,3,5-triazine) is a triazine herbicide used to control broadleaf weeds and annual grasses during the production of milo grain sorghum. This compound provides post-emergent protection by interfering with photosynthetic electron transport of target weeds. Tolerant crops are able to degrade the applied herbicide to nontoxic metabolites. Propazine is electrochemically active under acidic conditions. Electrochemical reduction pathways for this herbicide have been proposed based on differential pulse polarography (DPP) studies. Theoretical deconvolutions of the experimental polarograms were consistent with a 2-electron cleavage of the C–Cl bond via a mechanism involving a protonation step in between the two electron transfers. The resulting intermediate was then reduced by an irreversible 2-electron reduction of the ring to produce the final product. We report supporting nuclear magnetic resonance (NMR) evidence for the electrochemical dechlorination of propazine and reduction of the triazine ring using controlled potential electrolysis (CPE) and a mercury pool electrode under acidic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.