Abstract

The reduction mechanisms of a series of nickel(II) dithiocarboxylate complexes have been investigated in dimethyl sulphoxide at the mercury electrode. Various electrochemical techniques, including polarography, cyclic voltammetry, chronoamperometry, and controlled potential coulometry, were employed. The reduction of the complexes of the acid derivatives of 2-aminocyclopentene-1-dithiocarboxylate (ACD) proceeds initially by an ECE mechanism (electron transfer – chemical reaction – electron transfer) followed by a one-electron irreversible process. The nature of the complete electrode reaction suggests a metal-centered reduction. The nickel complexes of the ester derivatives of ACD underwent a one-electron reduction that was subject to a follow-up catalytic reaction (EC′ mechanism) and the original complex is regenerated through this regeneration reaction. Keywords: reduction, nickel(II) dithiocarboxylate, mercury electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.