Abstract

The redox and interactive behaviour of flavin adenine dinucleotide (FAD) with a ruthenium (Ru)-modified glassy carbon electrode (GCE) was investigated. The electron-transfer kinetics on the Ru-modified GCE gives an apparent electron-transfer coefficient, α app of 0.56, and an apparent heterogeneous electron transfer rate constant, k app of 2.32 s−1, respectively. The cyclic voltammetry (CV) complemented by alternating cyclic voltammetry (ACV) shows reduction of FAD to be a quasi-reversible reaction involving FAD adsorption. The adsorption of FAD on the Ru-modified GCE fits a Langmuir adsorption isotherm. The large apparent negative Gibbs energy of adsorption ΔG ads (−38.2 kJ mol−1) of FAD onto the Ru-modified GCE confirmed a strong chemical adsorption of FAD on the surface. The deposited Ru islands block surface sites for FAD adsorption and the electron-transfer communication between FAD and the electrode surface does not significantly improve with a deposited Ru monolayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call