Abstract

Formate has been considered an inactive molecule and thus cannot be further reduced under CO2 reduction conditions, which limits its widespread application as feedstock. Here we present an electrochemical redox conversion of formate to CO through the potential-dependent generation of carbon dioxide radical anions (CO2 ⋅- ) on Fe-Co layered double hydroxides (Fe-Co LDHs) and the subsequent reduction of CO2 ⋅- to CO on Au catalysts. We present an electrodeposition protocol for the synthesis of Fe-Co LDHs with precise composition control and find that Fe1 Co4 exhibits a promising potential window for CO2 ⋅- formation between 1.14 and 1.4 V and an optimized potential at 1.24 V at a neutral pH condition. We further determined the formation of CO2 ⋅- at 1.24 V via electron paramagnetic resonance and CO2 at >1.4 V through differential electrochemical mass spectrometry. This work provides a redox chemistry route for converting formate into CO through a coupled slit parallel-plate electrode system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.