Abstract

The electrodeposition of Pt from aqueous solutions of K2PtCl4 (Pt(II)), H2PtCl6 (Pt(IV)), and a mixture of Pt(II) and Pt(IV) was studied using the electrochemical quartz crystal microbalance (EQCM) method. Pt deposition and cathode current flow began at the same potential in the Pt(II) solution. On the other hand, in the Pt(IV) solution, the cathode current increased at a more positive potential followed by Pt deposition at a more negative potential than in the Pt(II) solution. This difference in the potentials is due to the reduction reaction of Pt(IV) to Pt(II). Thus, Pt deposition in the Pt(IV) solution occurred in two potential ranges. In the first range, which was more positive than the second one, Pt was deposited via the reduction of Pt(II) to Pt(0). In the second range, direct deposition from Pt(IV) to Pt(0) proceeded, but was followed by hydrogen adsorption, which inhibited further Pt deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.