Abstract

The Pr2CuO4 (PCO) submicrofiber precursors are prepared by electrospinning technique and the thermo-decomposition procedures are characterized by thermal gravity (TG), X-ray diffraction (XRD), Fourier transform infrared spectoscopy (FT-IR), and scanning electron microscopy (SEM), respectively. The fibrous PCO material was formed by sintering the precursors at 900 °C for 5 hrs. The highly porous PCO submicrofiber cathode forms good contact with the Ce0.9Gd0.1O1.95 (CGO) electrolyte after heat-treated at 900 °C for 2 hrs. The performance of PCO submicrofiber cathode is comparably studied with the powder counterpart at various temperatures. The porous microstructure of the submicrofiber cathode effectively increases the three-phase boundary (TPB), which promotes the surface oxygen diffusion and/or adsorption process on the cathode. The PCO submicrofiber cathode exhibits an area specific resistance (ASR) of 0.38 Ω cm2 at 700 °C in air, which is 30% less than the PCO powder cathode. The charge transfer process is the rate limiting step of the oxygen reduction reaction (ORR) on the submicrofiber cathode. The maximum power densities of the electrolyte-support single cell PCO|CGO|NiO-CGO reach 149 and 74.5 mW cm−2 at 800 and 700 °C, respectively. The preliminary results indicate that the PCO submicrofiber can be considered as potential cathode for intermediate temperature solid fuel cells (IT-SOFCs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.