Abstract

The electrochemical properties of two-dimensional assemblies of 500 nm type Ib diamond particles are investigated as a function of their surface oxidation state. High Pressure High Temperature particles are sequentially exposed to a hot strong acid bath and to H(2) plasma in order to generate oxygen (ODP) and hydrogen surface terminations (HDP). Changes in the surface composition following the chemical treatments are confirmed by FTIR. Electrophoretic mobility measurements show that the diamond particles exhibit a negative surface charge at pH above 7 independently of the surface termination. Oxidation in the acid bath and subsequent reduction in the H(2) plasma only affects about 30% of the particle surface charge. The intrinsic negative charge allows the formation of 2D assemblies by electrostatic adsorption on poly(diallyldimethylammonium chloride) (PDADMAC) modified In-doped SnO(2) electrodes (ITO). The particle number density in the assembly was controlled by the adsorption time up to a maximum coverage of ca. 40%. Cyclic voltammetry in the absence of redox species in solution show that the acid treatment effectively removes responses associated with sp(2) carbon impurities, resulting in a potential independent capacitive signal. On the other hand, HDP assemblies are characterized by a charging process at a potential above 0.1 V vs Ag/AgCl. These responses are associated with hole-injection into the valence band edge which is shifted to approximately -4.75 eV vs vacuum upon hydrogenation. Information concerning the position of the valence band edge as well as hole number density at the HDP surface as a function of the applied potential are extracted from the electrochemical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.