Abstract

Poly(anthraquinonyl sulfide) (PAQS)/graphene sheets (GSs) composite was synthesized through in situ polymerization to evaluate its performance as an electrode material for electrochemical capacitors. PAQS was successfully synthesized in the presence of GSs with uniform distribution. PAQS/GSs showed a pair of reversible redox peaks at around 0 V (vs. Ag/AgCl). The specific capacitance of PAQS/GSs was 349 F·g−1 (86 mAh·g−1) at a current density of 500 mA·g−1, and a capacitance of 305 F·g−1 was maintained even at a high current density of 5000 mA·g−1. The in situ polymerization of PAQS with GSs facilitated their interaction and enabled faster charge transfer and redox reaction, resulting in enhanced electrode properties.

Highlights

  • The increased demand for clean, renewable energy has led to intense research efforts into energy storage systems

  • We focused on Poly(anthraquinonyl sulfide) (PAQS) as an electrode material for electrochemical capacitors

  • PAQS/Graphene sheets (GSs) showed a pair of strong redox peaks at around 0 V

Read more

Summary

Introduction

The increased demand for clean, renewable energy has led to intense research efforts into energy storage systems. Quinone-based materials can provide high capacitance through a two-electron redox reaction, degradation of performance due to the dissolution of quinone molecules into both aqueous and organic electrolytes is a significant obstacle to their use in energy storage devices [14,21,22]. We synthesized PAQS in the presence of dispersed GSs (PAQS/GSs) to investigate the influence of in situ polymerization of PAQS with GSs on the electrode properties for electrochemical capacitors This in situ polymerization was a simple process because of the favorable π–π interactions between PAQS and GSs. The microstructure and electrode properties of PAQS/GSs were evaluated in order to understand the reaction activity of PAQS in aqueous electrolyte and the effect of in situ polymerization with GSs

Results and Discussion
Cyclic Voltammograms
Rate Capabilities
Material Synthesis
Characterization
Electrochemical Measurement
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.