Abstract

It is common to use efficient catalysts in the anodes and cathodes of methanol and ethanol fuel cells, such as platinum and ruthenium. However, due to their expansivity and rarity, finding a suitable alternative is important. In this work, multi-component catalysts consisting of tungsten oxide, nickel cobaltite, and activated carbon were synthesized through the hydrothermal method. The performance of catalysts in the processes of methanol and ethanol oxidation reactions (MOR and EOR) were investigated. The addition of activated carbon obtained from wheat husk, with an excellent active surface and acceptable electrical conductivity, to the matrix of the catalyst significantly facilitated the oxidation process of alcohols and enhanced the efficiency of the catalyst. The physical and electrochemical characterization of the NiCo2O4/WO3 hybridized with the wheat husk-derived activated carbon (ACWH) catalyst indicated its successful synthesis and good performance in the alcohol oxidation process. NiCo2O4/WO3/ACWH with an oxidation current density of 63.39 mA/cm2 at the peak potential of 0.58 V (1.59 vs. RHE), a cyclic stability of 98.6% in the methanol oxidation reaction (MOR) and 27.98 mA/cm2 at the peak potential of 0.67 V (1.68 vs. RHE), and a cyclic stability of 95.7% in the ethanol oxidation reaction (EOR) process can be an interesting option for application in the anodes of alcohol fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call