Abstract
As part of an investigation of new cathode materials for intermediate temperature solid oxide fuel cells, we have investigated several perovskite oxides with cobalt ions on the B sites in both bulk and thin film forms. Of particular interest is the composition La0.5Sr0.5CoO3−x (LSCO) which has exceptional properties for oxygen reduction at intermediate temperatures in ceria based fuel cells. Thin films of LSCO were deposited on both sides of a dense polycrystalline gadolinia doped ceria substrate by pulsed laser deposition under conditions that lead to the formation of nanocrystalline films. The electrochemical properties for oxygen reduction were determined in a symmetric electrochemical cell by alternating current (AC) impedance spectroscopy. The results were analyzed using the Adler−Lane−Steele (ALS) model to obtain the diffusion and surface exchange coefficients and the thermodynamic factor. We show that the thermodynamic factor, a measure of how easy it is to create oxygen vacancies, is much higher than observed in conventional cathodes. As a result, the electrode composition changes little with temperature and oxygen partial pressure, the large chemical contribution to the thermal expansion is reduced, and the electrode has good stability. The use of a nanostructured electrode does not significantly affect the fundamental material parameters (surface exchange and diffusion coefficients), and the very low area specific resistance (0.09 ohm cm2 at 600 °C) observed is because the synthesis method gives a very high surface area (80 μm−1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.