Abstract

Voluminous specimens of individual Fe5SiC iron silicocarbide and Fe3C iron carbide phases were produced by mechanical alloying with subsequent pressing and considered as models of nonmetallic inclusions in carbon steels and siliceous cast irons. In an acidic sulfate solution, silicocarbide is highly active in hydrogen reduction and iron ionization in the active dissolution range. Therefore, the corrosion resistance of silicocarbide in acids is lower compared to iron and cementite, which is caused by the peculiarities of its crystal structure. In a neutral borate solution both on silicocarbide and cementite, two anodic peaks are observed that are caused by the dissolution of the corresponding phase and the additional oxidation of the passive film, which is characterized by the heightened defectiveness because of the carbon accumulation. Silicocarbide has lower dissolution currents compared to cementite and a higher resistance to the local activation and depassivation, which is caused by the presence of a superficial layer enriched in SiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.