Abstract

We employed graphene flakes as an air-cathode material for Li-O2 batteries and investigated their electrochemical properties in the dimethyl ether electrolyte. Graphene flakes were prepared by microwave-assisted reduction of graphene oxide, and their electrochemical properties were compared with those of Ketjen Black and carbon nanotubes. The catalytic effect of the prepared graphene flake-air cathode was demonstrated using cyclic voltammetry and discharge-charge testing performed under a limited discharge capacity. The catalytic effect of graphene flakes was also supported by morphological and spectroscopic analysis of the discharge-charge products formed on the graphene surface. Scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy revealed that Li2O2, Li2O, and Li2CO3 were the main discharge products on all carbon-air cathode surfaces. Raman spectroscopy revealed that LiRCO3 was additionally formed on Ketjen Black and carbon nanotubes during the first discharge; however, its formation was not observed on the graphene flakes. The catalytic effect of the graphene flakes and the absence of LiRCO3 in the discharge product could explain the higher Coulombic efficiency in the discharge-charge tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.