Abstract

The electrochemical properties of carbon-coated FeS2 were investigated as a positive electrode material for lithium secondary batteries. The carbon-coated FeS2 powders were synthesized by ball-milling using polyaniline as the carbon source. The particles in the carbon-coated FeS2 samples were smaller than those in the pristine FeS2 samples. The electrochemical performance, including capacity, of these batteries was improved by carbon-coating by ball-milling. However, the initial coulombic efficiency decreased because of the reduction of the oxidized products on FeS2 surface. The reduction in particle size provides a larger contact area for the electrolyte. Larger quantities of oxidation products were formed by the reduction of FeS2 in the presence of air and water after carbon-coating. Therefore, the poor initial coulombic efficiencies of carbon-coated FeS2 electrodes were caused by the reduction of the oxidized products on the FeS2 surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.